中心16届毕业生应宙锋于Nature Communications发表文章

发布时间:2020-05-12


    我中心16届毕业生应宙锋日前在Nature Communications以第一作者身份发表文章。文章题目是“Electronic-photonic arithmetic logic unit for high-speed computing。 该文章提出了一种新型的光计算芯片架构,有望大幅提高目前CPU的频率上限同时减少功耗,为后摩尔时代的计算性能进一步提升提供了一种全新的光计算方案。

Ying, Z., Feng, C., Zhao, Z. et al. Electronic-photonic arithmetic logic unit for high-speed computing. Nat Commun 11, 2154 (2020). https://doi.org/10.1038/s41467-020-16057-3

https://www.nature.com/articles/s41467-020-16057-3



文章摘要:

The past two decades have witnessed the stagnation of the clock speed of microprocessors followed by the recent faltering of Moore’s law as nanofabrication technology approaches its unavoidable physical limit. Vigorous efforts from various research areas have been made to develop power-efficient and ultrafast computing machines in this post-Moore’s law era. With its unique capacity to integrate complex electro-optic circuits on a single chip, integrated photonics has revolutionized the interconnects and has shown its striking potential in optical computing. Here, we propose an electronic-photonic computing architecture for a wavelength division multiplexing-based electronic-photonic arithmetic logic unit, which disentangles the exponential relationship between power and clock rate, leading to an enhancement in computation speed and power efficiency as compared to the state-of-the-art transistors-based circuits. We experimentally demonstrate its practicality by implementing a 4-bit arithmetic logic unit consisting of 8 high-speed microdisk modulators and operating at 20 GHz. This approach paves the way to future power-saving and high-speed electronic-photonic computing circuits.

在过去的二十年中,微处理器的时钟频率停滞不前,而且随着纳米制造技术接近其不可避免的物理极限,摩尔定律的延续受到了无与伦比的挑战。在这个后摩尔时代,各学科各研究领域都为开发高能效和超快速的计算机做出了巨大的努力。集成光子学凭借其能够将复杂电光器件集成在单个芯片上的独特能力,使互连技术发生了革命性变化,并在光计算领域显示出惊人的潜力。在这里,我们提出了一种用于基于波分复用的电子-光子算术逻辑单元的光电混合计算架构,它有效突破了功率和时钟速率之间的指数关系,在最先进的基于晶体管的传统计算芯片的基础上进一步提高了计算速度和功率效率。我们通过实现一个由8个高速微盘调制器组成的4位算术逻辑单元,并在20GHz的频率下工作,实验性地证明了其实用性。这种方法为将来的低功耗高速光电混合计算电路铺平了道路。